国产精品无码毛片1区,94伊人国产精品视频,无码A级毛片在线观看,四虎一区二区三区

通用banner
您當前的位置 : 首 頁 > 企業分站

山東廠家PCB電路板加工廠

2020-02-24
山東廠家PCB電路板加工廠

一、PCB沉金采用的是化學沉積的方法,通過化學氧化還原反應的方法生成一層鍍層,一般厚度較厚,是化學鎳金金層沉積方法的一種,可以達到較厚的金層。二、PCB鍍金采用的是電解的原理,也叫電鍍方式。其他金屬表面處理也多數采用的是電鍍方式。在實際產品應用中,90%的金板是沉金板,因為鍍金板焊接性差是他的致命缺點,也是導致很多公司放棄鍍金工藝的直接原因!沉金工藝在印制線路表面上沉積顏色穩定,光亮度好,鍍層平整,可焊性良好的鎳金鍍層。基本可分為四個階段:前處理(除油,微蝕,活化、后浸),沉鎳,沉金,后處理(廢金水洗,DI水洗,烘干)。沉金厚度在0.025-0.1um間。金應用于電路板表面處理,因為金的導電性強,抗氧化性好,壽命長,而鍍金板與沉金板最根本的區別在于,鍍金是硬金(耐磨),沉金是軟金(不耐磨)。1、沉金與鍍金所形成的晶體結構不一樣,沉金對于金的厚度比鍍金要厚很多,沉金會呈金黃色,較鍍金來說更黃(這是區分鍍金和沉金的方法之一),鍍金的會稍微發白(鎳的顏色)。2、沉金與鍍金所形成的晶體結構不一樣,沉金相對鍍金來說更容易焊接,不會造成焊接不良。沉金板的應力更易控制,對有邦定的產品而言,更有利于邦定的加工。同時也正因為沉金比鍍金軟,所以沉金板做金手指不耐磨(沉金板的缺點)。3、PCB沉金板只有焊盤上有鎳金,趨膚效應中信號的傳輸是在銅層不會對信號有影響。4、沉金較鍍金來說晶體結構更致密,不易產成氧化。5、隨著電路板加工精度要求越來越高,線寬、間距已經到了0.1mm以下。鍍金則容易產生金絲短路。沉金板只有焊盤上有鎳金,所以不容易產成金絲短路。6、沉金板只有焊盤上有鎳金,所以線路上的阻焊與銅層的結合更牢固。工程在作補償時不會對間距產生影響。7、對于要求較高的板子,平整度要求要好,一般就采用沉金,沉金一般不會出現組裝后的黑墊現象。沉金板的平整性與使用壽命較鍍金板要好。所以目前大多數工廠都采用了沉金工藝生產金板。但是沉金工藝比鍍金工藝成本更貴(含金量更高),所以依然還有大量的低價產品使用鍍金工藝。

山東廠家PCB電路板加工廠

廠家PCB電路板pcn設計問題集第Y部分從pcb如何選材到運用等一系列問題進行總結。1、如何選擇PCB板材?選擇PCB板材必須在滿足設計需求和可量產性及成本中間取得平衡點。PCB電路板加工廠設計需求包含電氣和機構這兩部分。通常在設計非常高速的PCB板子(大于GHz的頻率)時這材質問題會比較重要。例如,現在常用的FR-4材質,在幾個GHz的頻率時的介質損耗(dielectric loss)會對信號衰減有很大的影響,可能就不合用。就電氣而言,要注意介電常數(dielectric constant)和介質損在所設計的頻率是否合用。2、如何避免高頻干擾?避免高頻干擾的基本思路是盡量降低高頻信號電磁場的干擾,也就是所謂的串擾(Crosstalk)。可用拉大高速信號和模擬信號之間的距離,或加ground guard/shunt traces在模擬信號旁邊。還要注意數字地對模擬地的噪聲干擾。3、在高速設計中,如何解決信號的完整性問題?信號完整性基本上是阻抗匹配的問題。而影響阻抗匹配的因素有信號源的架構和輸出阻抗(output impedance),走線的特性阻抗,負載端的特性,走線的拓樸(topology)架構等。解決的方式是靠端接(termination)與調整走線的拓樸。

山東廠家PCB電路板加工廠

【第Y招】多層板布線高頻電路往往集成度較高,布線密度大,采用多層板既是布線所必須,也是降低干擾的有效手段。在PCB Layout階段,合理的選擇一定層數的印制板尺寸,能充分利用中間層來設置屏蔽,更好地實現就近接地,并有效地降低寄生電感和縮短信號的傳輸長度,同時還能大幅度地降低信號的交叉干擾等,所有這些方法都對高頻電路的可靠性有利。有資料顯示,同種材料時,四層板要比雙面板的噪聲低20dB。但是,同時也存在一個問題,PCB半層數越高,制造工藝越復雜,單位成本也就越高,這就要求我們在進行PCB Layout時,除了選擇合適的層數的PCB板,還需要進行合理的元器件布局規劃,并采用正確的布線規則來完成設計。  【第二招】高速電子器件管腳間的引線彎折越少越好  高頻電路布線的引線最好采用全直線,需要轉折,可用45度折線或者圓弧轉折,這種要求在低頻電路中僅僅用于提高銅箔的固著強度,而在高頻電路中,滿足這一要求卻可以減少高頻信號對外的發射和相互間的耦合。  【第三招】高頻電路器件管腳間的引線越短越好  信號的輻射強度是和信號線的走線長度成正比的,高頻的信號引線越長,它就越容易耦合到靠近它的元器件上去,所以對于諸如信號的時鐘、晶振、DDR的數據、LVDS線、USB線、HDMI線等高頻信號線都是要求盡可能的走線越短越好。  【第四招】高頻電路器件管腳間的引線層間交替越少越好  所謂“引線的層間交替越少越好”是指元件連接過程中所用的過孔(Via)越少越好。據側,一個過孔可帶來約0.5pF的分布電容,減少過孔數能顯著提高速度和減少數據出錯的可能性。

山東廠家PCB電路板加工廠

相信對做硬件的工程師,畢業開始進公司時,在設計PCB時,老工程師都會對他說,PCB走線不要走直角,走線一定要短,電容一定要就近擺放等等。但是一開始我們可能都不了解為什么這樣做,就憑他們的幾句經驗對我們來說是遠遠不夠的哦,當然如果你沒有注意這些細節問題,今后又犯了,可能又會被他們罵,“都說了多少遍了電容一定要就近擺放,放遠了起不到效果等等”,往往經驗告訴我們其實那些老工程師也是只有一部分人才真正掌握其中的奧妙,我們一開始不會也不用難過,多看看資料很快就能掌握的。直到被罵好幾次后我們回去找相關資料,為什么設計PCB電容要就近擺放呢,等看了資料后就能了解一些,可是網上的資料很雜散,很少能找到一個很全方面講解的。下面這些內容是我轉載的一篇關于電容去耦半徑的講解,相信你看了之后可以很牛x的回答和避免類似問題的發生。老師問: 為什么去耦電容就近擺放呢?學生答: 因為它有有效半徑哦,放的遠了失效的。電容去耦的一個重要問題是電容的去耦半徑。大多數資料中都會提到電容擺放要盡量靠近芯片,多數資料都是從減小回路電感的角度來談這個擺放距離問題。確實,減小電感是一個重要原因,但是還有一個重要的原因大多數資料都沒有提及,那就是電容去耦半徑問題。如果電容擺放離芯片過遠,超出了它的去耦半徑,電容將失去它的去耦的作用。理解去耦半徑最好的辦法就是考察噪聲源和電容補償電流之間的相位關系。當芯片對電流的需求發生變化時,會在電源平面的一個很小的局部區域內產生電壓擾動,電容要補償這一電流(或電壓),就必須先感知到這個電壓擾動。信號在介質中傳播需要一定的時間,因此從發生局部電壓擾動到電容感知到這一擾動之間有一個時間延遲。同樣,電容的補償電流到達擾動區也需要一個延遲。因此必然造成噪聲源和電容補償電流之間的相位上的不一致。

山東廠家PCB電路板加工廠

在高速設計中,可控阻抗板和線路的特性阻抗問題困擾著許多中國工程師。本文通過簡單而且直觀的方法介紹了特性阻抗的基本性質、計算和測量方法。在高速設計中,可控阻抗板和線路的特性阻抗是最重要和最普遍的問題之一。首先了解一下傳輸線的定義:傳輸線由兩個具有一定長度的導體組成,一個導體用來發送信號,另一個用來接收信號(切記“回路”取代“地”的概念)。在一個多層板中,每一條線路都是傳輸線的組成部分,鄰近的參考平面可作為第二條線路或回路。一條線路成為“性能良好”傳輸線的關鍵是使它的特性阻抗在整個線路中保持恒定。線路板成為“可控阻抗板”的關鍵是使所有線路的特性阻抗滿足一個規定值,通常在25歐姆和70歐姆之間。在多層線路板中,傳輸線性能良好的關鍵是使它的特性阻抗在整條線路中保持恒定。但是,究竟什么是特性阻抗?理解特性阻抗最簡單的方法是看信號在傳輸中碰到了什么。當沿著一條具有同樣橫截面傳輸線移動時,這類似圖1所示的微波傳輸。假定把1伏特的電壓階梯波加到這條傳輸線中,如把1伏特的電池連接到傳輸線的前端(它位于發送線路和回路之間),一旦連接,這個電壓波信號沿著該線以光速傳播,它的速度通常約為6英寸/納秒。當然,這個信號確實是發送線路和回路之間的電壓差,它可以從發送線路的任何一點和回路的相臨點來衡量。圖2是該電壓信號的傳輸示意圖。Zen的方法是先“產生信號”,然后沿著這條傳輸線以6英寸/納秒的速度傳播。第Y個0.01納秒前進了0.06英寸,這時發送線路有多余的正電荷,而回路有多余的負電荷,正是這兩種電荷差維持著這兩個導體之間的1伏電壓差,而這兩個導體又組成了一個電容器。在下一個0.01納秒中,又要將一段0.06英寸傳輸線的電壓從0調整到1伏特,這必須加一些正電荷到發送線路,而加一些負電荷到接收線路。每移動0.06英寸,必須把更多的正電荷加到發送線路,而把更多的負電荷加到回路。每隔0.01納秒,必須對傳輸線路的另外一段進行充電,然后信號開始沿著這一段傳播。電荷來自傳輸線前端的電池,當沿著這條線移動時,就給傳輸線的連續部分充電,因而在發送線路和回路之間形成了1伏特的電壓差。每前進0.01納秒,就從電池中獲得一些電荷(±Q),恒定的時間間隔(±t)內從電池中流出的恒定電量(±Q)就是一種恒定電流。流入回路的負電流實際上與流出的正電流相等,而且正好在信號波的前端,交流電流通過上、下線路組成的電容,結束整個循環過程。

標簽

上一篇:河南廠家PCB打樣生產廠2020-02-24
下一篇:浙江廠家FPC柔性版生產商2020-02-24

所有分類 首頁 PCB板專區 SMT貼片專區 聯系我們 新聞中心 收藏店鋪